Liu T, Du F, Wan Y, Zhu F, Xing J.
J Mass Spectrom. 2011 Aug;46(8):725-33.
Artemisinin drugs have become the first-line antimalarials in areas of multi-drug resistance. However, monotherapy with artemisinin drugs results in comparatively high recrudescence rates. Autoinduction of CYP-mediated metabolism, resulting in reduced exposure, has been supposed to be the underlying mechanism. To better understand the autoinduction of artemisinin drugs, we evaluated the biotransformation of artemisinin, also known as Qing-hao-su (QHS), and its active derivative dihydroartemisinin (DHA) in vitro and in vivo, using LTQ-Orbitrap hybrid mass spectrometer in conjunction with online hydrogen (H)/deuterium (D) exchange high-resolution (HR)-LC/MS (mass spectrometry) for rapid structural characterization. The LC separation was improved allowing the separation of QHS parent drugs and their metabolites from their diastereomers. Thirteen phase I metabolites of QHS have been identified in liver microsomal incubates, rat urine, bile and plasma, including six deoxyhydroxylated metabolites, five hydroxylated metabolites, one dihydroxylated metabolite and deoxyartemisinin. Twelve phase II metabolites of QHS were detected in rat bile, urine and plasma. DHA underwent similar metabolic pathways, and 13 phase I metabolites and 3 phase II metabolites were detected. Accurate mass data were obtained in both full-scan and MS/MS mode to support assignments of metabolite structures. Online H/D exchange LC-HR/MS experiments provided additional evidence in differentiating deoxydihydroxylated metabolites from mono-hydroxylated metabolites. The results showed that the main phase I metabolites of artemisinin drugs are hydroxylated and deoxyl products, and they will undergo subsequent phase II glucuronidation processes. This study also demonstrated the effectiveness of online H/D exchange LC-HR/MSn technique in rapid identification of drug metabolites.
http://onlinelibrary.wiley.com/doi/10.1002/jms.1943/abstractSchool of Pharmaceutical Sciences, Shandong University, 250012 Jinan, China.