Showing results for 
Search instead for 
Did you mean: 

Quantitative proteomic analysis of single pancreatic islets

Reputable Mentor II
Reputable Mentor II
Waanders LF, Chwalek K, Monetti M, Kumar C, Lammert E, Mann M.
Proc Natl Acad Sci U S A. 2009 Nov 10;106(45):18902-7.
Technological developments make mass spectrometry (MS)-based proteomics a central pillar of biochemical research. MS has been very successful in cell culture systems, where sample amounts are not limiting. To extend its capabilities to extremely small, physiologically distinct cell types isolated from tissue, we developed a high sensitivity chromatographic system that measures nanogram protein mixtures for 8 h with very high resolution. This technology is based on splitting gradient effluents into a capture capillary and provides an inherent technical replicate. In a single analysis, this allowed us to characterize kidney glomeruli isolated by laser capture microdissection to a depth of more than 2,400 proteins. From pooled pancreatic islets of Langerhans, another type of ‘‘miniorgan,’’ we obtained an in-depth proteome of 6,873 proteins, many of them involved in diabetes. We quantitatively compared the proteome of single islets, containing 2,000–4,000 cells, treated with high or low glucose levels, and covered most of the characteristic functions of beta cells. Our ultrasensitive analysis recapitulated known hyperglycemic changes but we also find components up-regulated such as the mitochondrial stress regulator Park7. Direct proteomic analysis of functionally distinct cellular structures opens up perspectives in physiology and pathology.
Department for Proteomics and Signal Transduction, Max Planck Institute for Biochemistry, Am Klopferspitz 18, 82152 Martinsried, Germany.
Version history
Last update:
‎10-15-2021 11:44 AM
Updated by: