cancel
Showing results for 
Search instead for 
Did you mean: 
Orbitrap_SciLib
Reputable Mentor II
Reputable Mentor II
Hauri S, Wepf A, van Drogen A, Varjosalo M, Tapon N, Aebersold R, Gstaiger M.
Mol Syst Biol. 2013 Dec 22;9(1):713.
Tissue homeostasis is controlled by signaling systems that coordinate cell proliferation, cell growth and cell shape upon changes in the cellular environment. Deregulation of these processes is associated with human cancer and can occur at multiple levels of the underlying signaling systems. To gain an integrated view on signaling modules controlling tissue growth, we analyzed the interaction proteome of the human Hippo pathway, an established growth regulatory signaling system. The resulting high-resolution network model of 480 protein-protein interactions among 270 network components suggests participation of Hippo pathway components in three distinct modules that all converge on the transcriptional co-activator YAP1. One of the modules corresponds to the canonical Hippo kinase cassette whereas the other two both contain Hippo components in complexes with cell polarity proteins. Quantitative proteomic data suggests that complex formation with cell polarity proteins is dynamic and depends on the integrity of cell-cell contacts. Collectively, our systematic analysis greatly enhances our insights into the biochemical landscape underlying human Hippo signaling and emphasizes multifaceted roles of cell polarity complexes in Hippo-mediated tissue growth control.

http://msb.embopress.org/content/msb/9/1/713.full.pdf
Institute of Molecular Systems Biology, ETH Zurich; Competence Center for Systems Physiology and Metabolic Diseases, ETH Zurich; Analytica Medizinische Laboratorien AG; Institute of Biotechnology, University of Helsinki; Cancer Research UK, London Research Institute 6. Faculty of Science, University of Zurich, Zurich, Switzerland
Version history
Last update:
‎10-15-2021 11:37 AM
Updated by:
Closed Account
Contributors