Showing results for 
Search instead for 
Did you mean: 

Identification of the unknown transformation products derived from clarithromycin and carbamazepine using liquid chromatography/high-resolution mass spectrometry

Reputable Mentor II
Reputable Mentor II
Calza P, Medana C, Padovano E, Giancotti V, Baiocchi C.
Rapid Commun Mass Spectrom. 2012 Aug 15;26(15):1687-704.
RATIONALE: A comprehensive study of the environmental fate of pollutants is more and more required, above all on new contaminants, i.e. pharmaceuticals. As high-resolution mass spectrometry (HRMS(n)) may be a suitable analytical approach for characterization of unknown compounds, its performance was evaluated in this study. METHODS: The analyses were carried out using liquid chromatography (LC) (electrospray ionization (ESI) in positive mode) coupled with a LTQ-Orbitrap analyzer. High-resolution mass spectrometry was employed to assess the evolution of the drug transformation processes over time; accurate masses of protonated molecular ions and sequential product ions were reported with an error below 5 millimass units, which guarantee the correct assignment of their molecular formula in all cases, while their MS(2) and MS(3) spectra showed several structurally diagnostic ions that allowed characterization of the different transformation products (TPs) and to distinguish the isobaric species. RESULTS: The simulation of phototransformation occurring in the aquatic environment and identification of biotic and abiotic transformation products of the two pharmaceuticals were carried out in heterogeneous photocatalysis using titanium dioxide, aimed to recreate conditions similar to those found in the environmental samples. Twenty-eight main species were identified after carbamazepine transformation and twenty-nine for clarithromycin. CONCLUSIONS: This study demonstrates that HRMS, combined with LC, is a technique able to play a key role in the evaluation of the environmental fate of pollutants and allows elucidation of the transformation pathways followed by the two drugs.
Dipartimento di Chimica, University of Torino, via P. Giuria 5, 10125 Torino, Italy.
Version history
Last update:
‎10-15-2021 08:31 AM
Updated by: