Showing results for 
Search instead for 
Did you mean: 

Identification in human urine and blood of a novel selenium metabolite, Se-methylselenoneine, a potential biomarker of metabolization in mammals of the naturally occurring selenoneine, by HPLC coupled to electrospray hybrid linear ion trap-orbital ion trap MS

Reputable Mentor II
Reputable Mentor II
Klein M, Ouerdane L, Bueno M, Pannier F.
Metallomics. 2011 May 1;3(5):513-20.
Speciation analysis of selenium in human urine allowed for the first time the identification of a novel selenium metabolite, Se-methylselenoneine. Despite a concentration at low ppb level, its characterization was achieved after sample purification by solid phase extraction (SPE) followed by the parallel coupling of the bidimensional RP/HILIC chromatography with ICP-MS and ESI-LTQ Orbitrap MS detection. To confirm its biological significance with regards to selenoneine, the recently discovered analog of ergothioneine, and to discard the possibility of sample preparation artifacts, a new method was developed to monitor its actual presence, as well as the occurrence of its sulfur and/or non-methylated analogs, in non-preconcentrated urine and blood samples of non-supplemented humans. It consisted in a HILIC ESI-MS(3) method in high resolution mode (resolution 30 000 at m/z 400) with large isolation width windows for precursor ions. These two particular settings allowed respectively to keep observing the specific mass defect of selenium- and sulfur-containing molecules and to maintain the characteristic selenium pattern in product ions created through MS(n) fragmentations. As a result, all four metabolites were detected in blood and three of them in urine. Moreover, different ratios "methylated/non-methylated" were observed between urine and blood samples, which seemed to indicate their active metabolization. The analytical tool developed here will be of a great importance to further study the occurrence and the potential metabolic role in mammalian organelles, cells and fluids of these very particular and promising redox metabolites.
Laboratoire de Chimie Analytique Bio Inorganique et Environnement, IPREM, Université de Pau et des Pays de l'Adour / CNRS UMR 5254, Hélioparc, Avenue du Pr. Angot, Pau, France.
Version history
Last update:
‎10-15-2021 11:29 AM
Updated by: