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Nickel Saccharin and SAS Analysis by HPLC–UV–Charged Aerosol Detection 
A nickel plating bath matrix sample was spiked with an amount of saccharin and 
analyzed using the conditions outlined above.  Clear retention of the analytes was 
evident, by HPLC-Charged Aerosol Detection, as shown in Figure 6.  Calibration and 
sample analyses were conducted (not shown), and the results were quantifiable.  Also, 
the use of saccharin for the determination of saccharin-related impurities by HPLC-UV at 
230 nm is possible (not shown). 

 

 

 

 

 

 

 

 

 

 

 

 

 

Measurement Capability 
Gage studies were conducted on analyses of organic additives in plating baths by current 
metrology and by the HPLC-Charged Aerosol Detection methods.  The results, shown in 
Table 1, demonstrated that the HPLC methods are significantly more capable than 
previous methods, with  SV/T (standard variance relative to process tolerance) values 
significantly reduced. Methods where the SV/T values < 7 are considered to be highly 
capable, and those between 10 – 30 need to be evaluated for risks of errors. 

Table 1.  Gage evaluation comparing previous metrology with HPLC-Charged 
Aerosol Detection metrology. 

FIGURE 3. Functioning of electrochemical detection using coulometric cells. 
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Conclusions 
Using charged aerosol detection and electrochemical detection running in parallel on 
the UltiMate 3000 2x Dual LC provided excellent quantitative data on the three copper 
plating bath additives. 

 HPLC methods are capable of reliably quantifying organic additives in copper 
and nickel plating baths, as well as determining plating bath quality. 

 Analysis times were short, compared to CVS and other analytical methods. 

 The method is extremely versatile, capable of being adapted to a variety of 
plating bath compositions. 
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Overview 
Purpose: Analytical methods to determine quantities of copper and nickel plating bath 
additives are described. These methods must be stable, sufficiently sensitive, and 
retain flexibility for use with the many formulations of copper plating baths that exist. 

Methods: Two HPLC methods are run simultaneously to quantitatively measure the 
three additives that are typically used in copper plating baths. Both methods use 
reversed-phase high-performance liquid chromatography (RP-HPLC), which can be run 
simultaneously on the Thermo Scientific™ Dionex™ UltiMate™ 3000 HPLC system. The 
accelerator and suppressor are measured using the Thermo Scientific™  Dionex™ 

Corona™  Veo™ Charged Aerosol Detector; the leveller and accelerator (again) are 
measured using the Thermo Scientific Dionex UltiMate 3000 ECD30000RS 
Electrochemical Detector (ECD).  For the nickel plating a method for measuring 
saccharin and sodium alkyl sulfate (SAS), using ultraviolet absorption (UV) and 
charged aerosol detection are described. 

Results: The methods are precise and sensitive for the determination of all additives. A 
quantitative measure of suppressor and suppressor degradation is presented.  
Calibration curves and sample analysis results are reported for all additives. Both 
analyses can be run using the same sample preparation. 

Introduction 
Copper plating baths are used in the manufacture of a multitude of products, from the 
relatively humble cooking pot to the most advanced integrated circuits and satellites.  
In order to provide the highest quality and most consistent products with copper plated 
components, the plating process must be well characterized and tightly controlled. 
 
One of the most common approaches to the copper plating is the acid bath, using 
copper sulfate, sulfuric acid, and a number of additives, namely the accelerator 
(typically a bis(sodium sulfoalkyl) disulfide), suppressor (a polyalkylglycol), and leveller 
(either a large molecular weight polymer or small molecule containing nitrogen or 
sulfur). Each modifier serves a particular function controlling the speed of plating, 
surface wetting, and gap-filling in order to provide a smooth surface. The most 
commonly used technique, cyclic voltammetric stripping (CVS), measures these 
additives as combined, and has been cited as being slow (hours) and not very 
accurate.1 HPLC has also been investigated, but with few published results. The 
accelerator and leveller are present in minute concentrations and lack chromophores, 
which limits the choice of detectors that can be used for quantitation. HPLC can 
provide selective quantitation of these additives, without the use of corrosive sulfuric 
acid mobile phases.1,2 For nickel additives, saccharin can be measured by UV along 
with SAS by Corona charged aerosol detectors. 
 
A faster, quantitative measure of additives can be achieved using the UltiMate 3000  
x2 Dual LC system with two detectors: the Corona Veo RS and the ECD3000RS 
detectors. The Corona charged aerosol detector is a universal detector, capable of 
measuring any nonvolatile analyte to nanograms on column. The ECD3000RS detector 
is both extremely sensitive and selective and is ideal for measuring low levels of 
electrochemically active (oxidizable) analytes. Both methods can be run 
simultaneously, as shown in the system schematic in Figure 1. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

FIGURE 1. Schematic of the parallel setup HPLC solution for the simultaneous  
operation of both analytical methods: system 1 for the accelerator and leveller 
by ECD, and system 2 for the accelerator and suppressor by charged aerosol 
detector. 

Results  
The samples of plating bath and of plating bath additive stock solutions (“standards”) 
were from two, unrelated sources. As a result, the components of the plating bath 
samples may not be the same as those of the standards. Consequently, samples were 
analyzed according to nominal concentrations (NC) used by the source of the standards, 
where analytes matched. 

Copper Accelerator and Leveller Analysis by Electrochemical Detection 
Standards of stock additive solutions were prepared in concentrations of 300% NC, and 
serially diluted to low concentrations. Calibration standards were injected in triplicate to 
determine calibration curves and instrument precision.  

The linear correlation coefficients for both additives were high, with R2= 0.9987 and 
0.9945 for accelerator and leveller, respectively. Peak area percent RSD values ranged 
from 0.6 to 2.3 for accelerator and 4.9 to 18.6 for leveller, with the higher values at the 
low concentrations. 

A samples was neutralized and analyzed, and the HPLC-ECD chromatograms are shown 
in Figure 4, with the +650 mV chromatogram in black, and the +900 mV chromatogram 
shown in blue. 
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FIGURE 4. HPLC-ECD chromatogram, two potentials overlaid, of used copper 
plating bath containing accelerator and leveller(s). Peak at 4.895 minutes is 
likely a free amine-polymer, based on the peak shape and potential of oxidation. 

Methods  
Sample Preparation 
All copper plating bath standard solutions and samples must be properly neutralized 
prior to injection onto the HPLC system.  

Liquid Chromatography – Copper Additives 
HPLC System:   UltiMate 3000 DGP-3000RS system, parallel setup solution 
Mobile Phase 1A:*   Water, 0.1 v/v-% trifluoroacetic acid  
Mobile Phase 1B/2B:   Methanol 
Mobile Phase 1C: *  Acetonitrile/methanol (900:100), 0.1 v/v-% trifluoroacetic acid 
Mobile Phase 2A:   (70% Ethyl amine)/acetic acid in water (6 mL/L:4 mL/L), pH 5-6 
Injection Volumes:  100 L 
HPLC Column 1:  Thermo Scientific™ Accucore™ C18, 2.6 m, 4.6 × 150 mm 
HPLC Column 2:  Thermo Scientific™ Acclaim™ 120 C18, 5 m, 4.6 × 150 mm 
Column Temperature:   40 °C 
Detector 1:  ECD3000RS with Thermo Scientific Dionex 6011RS 
 Standard Analytical Cell  
 Electrode 1:  +650 mV    Electrode 2:  +900 mV, relative to Pd 
Detector 2:  Corona Veo RS   Data Rate:  10 Hz Filter:  3.6s 
 Evaporation Temperature: 50 °C 
 Power Function: 2.00 (5.8 – 8.5 minutes) 
Sample Temperature: 20 °C 
Analysis Time:   16 minutes 
Gradients: 

 

 
 
 
 
Liquid Chromatography – Nickel Additives 
HPLC System: UltMate 3000 SD or RS system. 
Column: Accucore C18, 2.6 m, 4.6 × 150 mm 
Mobile phase A: Water, 25 mM diethylamine acetate, pH 5.0 
Mobile phase B: Acetonitrile 
Flow Rate: 1 mL/min 
Column Temperature:   40 °C 
Detector 1: DAD-3400RS at wavelength 230 nm 
Detector 2:  Corona Veo RS, placed after DAD 
 Data Rate:  10 Hz Filter:  3.6 s 
 Evaporation Temperature: 25 °C 
 Power Function: 1.0 
Gradient: -5 min, 2 %B; 0 min, 2 %B; 15 min, 95 %B; 20 min, 95 %B;  
 20 min, 2 %B 

Data Analysis 
The HPLC system, data collection, and processing were all operated by and performed 
on the Thermo Scientific™ Dionex™ Chromeleon™  Chromatography Data System        
7.2 SR1 software. 

The ECD3000RS uses unique coulometric working electrodes that offer extreme 
sensitivity and selectivity, well beyond those achieved by traditional amperometric 
electrodes. The selectivity of serially placed coulometric electrodes is presented in 
Figure 3. Typically the first electrode is held at a low potential, the second at a higher 
potential. As the analytes pass through from one electrode to the other, labile 
compounds will respond (oxidize) at the first electrode, leaving the second 
(downstream) electrode free to measure more stable compounds. Electrodes are 
100% efficient, which provides the selectivity. In the example below, analyte A oxidizes 
to P on electrode 1 (E1) held at +650 mV, relative to palladium, applied potential 
effectively removing it from further reaction. Analyte B remains unchanged until it 
encounters electrode two (E2) at +900 mV applied potential. At E2, analyte B oxidizes 
to Q. This provides a selective means of determining amounts of different analytes. 
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FIGURE 2. Schematic and functioning of charged aerosol detection. 

1. Liquid eluent enters from HPLC system 
2. Pneumatic nebulization occurs 
3. Small droplets enter drying tube 
4. Large droplets exit to drain 
5. Dried particles enter mixing chamber 
6. Gas stream passes over corona needle 
7. Charge gas collides with particles and 

charge is transferred  
8. High mobility species are removed 
9. Charge measured by electrometer 
10. Signal transferred to chromatographic 

software 

The charged aerosol detector is a sensitive, mass-based detector, especially well-
suited for the determination of any nonvolatile analyte independent of chemical 
characteristics. As shown in Figure 2, the detector uses nebulization to create aerosol 
droplets. The mobile phase evaporates in the drying tube, leaving analyte particles, 
which become charged in the mixing chamber. The charge is then measured by a 
highly sensitive electrometer, providing reproducible, nanogram-level sensitivity. This 
technology has greater sensitivity and precision than evaporative light scattering (ELS) 
and refractive index (RI), and it is simpler and less expensive to operate than a mass 
spectrometer (MS). Typical characteristics of charged aerosol detection include: low-
nanogram on column (o.c.) amounts detected, over four orders of magnitude of linear, 
dynamic range, and high precision results with typically less than two percent of peak 
area relative standard deviation (RSD). Analyte response is also largely independent 
of chemical structure, providing clear relationships among different analytes in a 
sample. 
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FIGURE 5. Overlay chromatograms of new (in black) and used (in blue, diluted 
50%) copper plating baths, using HPLC with charged aerosol detection. 
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Spike and recovery values, at 50% spike amounts, were determined for the 
accelerator and leveller: a bath sample was diluted to 50% to find initial 
concentrations, and then a second sample was diluted with 100% NC standard, 
yielding a 50% spike. The recovery values were found to be 99% for the accelerator, 
and 70% for the leveller. The signal-to-noise (S/N) value of the leveller (blue) in this 
spiked sample was 66, indicating that sufficient sensitivity was available for these 
determinations. Signal-to-noise values of 10 and 3.3 were used to calculate the limits 
of quantitation (LOQ) and detection (LOD), respectively. The LOQ and LOD values 
were 1 and 0.3% NC for the accelerator and 20% and 7% NC for the leveller, 
respectively. 
 
Copper Suppressor Analysis by Charged Aerosol Detection 
 
Standards of stock additive solutions were prepared in concentrations of 300% NC, 
and diluted to low concentrations. Calibration standards were injected in triplicate to 
determine correlation and precision.  The linear calibration correlation coefficients 
were R2= 0.9987 and 0.9957 for accelerator and suppressor, respectively. Precision 
RSD values, based on peak areas varied between 1.0 and 5.3% for the accelerator, 
and were less than 1 % for the suppressor. In addition to method accuracy and 
precision data, the LC-Charged Aerosol Detection method was evaluated for spike 
recovery in a similar manner as indicated for the ECD evaluation. Recovery values 
for the accelerator was 103%, and for the suppressor, 95-100%.  
 
The sensitivity for the accelerator was found to be 3% NC for LOQ, based on a S/N 
ratio of 10. In the sample chromatograms, shown in Figure 5, two plating bath 
samples are overlaid consisting of a new and a used (diluted 50%) plating bath. The 
suppressor is seen as the largest peak in the chromatograms, along with many 
smaller peaks with earlier retention times. These smaller peaks represent lower 
molecular weight fractions of the suppressor. Compared to the new bath, the 
suppressor concentrations differed by nearly seven-fold in the used bath, along with 
a four-fold increase in the relative amounts of the smaller molecular weight fractions. 
These changes are related to suppressor degradation as the bath is operated.3 Both 
accelerator and suppressor can be determined as well as bath quality, as a measure 
of relative suppressor degradation. 
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FIGURE 6. HPLC-Charged Aerosol Detection chromatogram of saccharin in 
nickel plating bath (blue), and SAS (black) overlaid. 
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Nickel Saccharin and SAS Analysis by HPLC–UV–Charged Aerosol Detection 
A nickel plating bath matrix sample was spiked with an amount of saccharin and 
analyzed using the conditions outlined above.  Clear retention of the analytes was 
evident, by HPLC-Charged Aerosol Detection, as shown in Figure 6.  Calibration and 
sample analyses were conducted (not shown), and the results were quantifiable.  Also, 
the use of saccharin for the determination of saccharin-related impurities by HPLC-UV at 
230 nm is possible (not shown). 

 

 

 

 

 

 

 

 

 

 

 

 

 

Measurement Capability 
Gage studies were conducted on analyses of organic additives in plating baths by current 
metrology and by the HPLC-Charged Aerosol Detection methods.  The results, shown in 
Table 1, demonstrated that the HPLC methods are significantly more capable than 
previous methods, with  SV/T (standard variance relative to process tolerance) values 
significantly reduced. Methods where the SV/T values < 7 are considered to be highly 
capable, and those between 10 – 30 need to be evaluated for risks of errors. 

Table 1.  Gage evaluation comparing previous metrology with HPLC-Charged 
Aerosol Detection metrology. 

FIGURE 3. Functioning of electrochemical detection using coulometric cells. 
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Conclusions 
Using charged aerosol detection and electrochemical detection running in parallel on 
the UltiMate 3000 2x Dual LC provided excellent quantitative data on the three copper 
plating bath additives. 

 HPLC methods are capable of reliably quantifying organic additives in copper 
and nickel plating baths, as well as determining plating bath quality. 

 Analysis times were short, compared to CVS and other analytical methods. 

 The method is extremely versatile, capable of being adapted to a variety of 
plating bath compositions. 
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Overview 
Purpose: Analytical methods to determine quantities of copper and nickel plating bath 
additives are described. These methods must be stable, sufficiently sensitive, and 
retain flexibility for use with the many formulations of copper plating baths that exist. 

Methods: Two HPLC methods are run simultaneously to quantitatively measure the 
three additives that are typically used in copper plating baths. Both methods use 
reversed-phase high-performance liquid chromatography (RP-HPLC), which can be run 
simultaneously on the Thermo Scientific™ Dionex™ UltiMate™ 3000 HPLC system. The 
accelerator and suppressor are measured using the Thermo Scientific™  Dionex™ 

Corona™  Veo™ Charged Aerosol Detector; the leveller and accelerator (again) are 
measured using the Thermo Scientific Dionex UltiMate 3000 ECD30000RS 
Electrochemical Detector (ECD).  For the nickel plating a method for measuring 
saccharin and sodium alkyl sulfate (SAS), using ultraviolet absorption (UV) and 
charged aerosol detection are described. 

Results: The methods are precise and sensitive for the determination of all additives. A 
quantitative measure of suppressor and suppressor degradation is presented.  
Calibration curves and sample analysis results are reported for all additives. Both 
analyses can be run using the same sample preparation. 

Introduction 
Copper plating baths are used in the manufacture of a multitude of products, from the 
relatively humble cooking pot to the most advanced integrated circuits and satellites.  
In order to provide the highest quality and most consistent products with copper plated 
components, the plating process must be well characterized and tightly controlled. 
 
One of the most common approaches to the copper plating is the acid bath, using 
copper sulfate, sulfuric acid, and a number of additives, namely the accelerator 
(typically a bis(sodium sulfoalkyl) disulfide), suppressor (a polyalkylglycol), and leveller 
(either a large molecular weight polymer or small molecule containing nitrogen or 
sulfur). Each modifier serves a particular function controlling the speed of plating, 
surface wetting, and gap-filling in order to provide a smooth surface. The most 
commonly used technique, cyclic voltammetric stripping (CVS), measures these 
additives as combined, and has been cited as being slow (hours) and not very 
accurate.1 HPLC has also been investigated, but with few published results. The 
accelerator and leveller are present in minute concentrations and lack chromophores, 
which limits the choice of detectors that can be used for quantitation. HPLC can 
provide selective quantitation of these additives, without the use of corrosive sulfuric 
acid mobile phases.1,2 For nickel additives, saccharin can be measured by UV along 
with SAS by Corona charged aerosol detectors. 
 
A faster, quantitative measure of additives can be achieved using the UltiMate 3000  
x2 Dual LC system with two detectors: the Corona Veo RS and the ECD3000RS 
detectors. The Corona charged aerosol detector is a universal detector, capable of 
measuring any nonvolatile analyte to nanograms on column. The ECD3000RS detector 
is both extremely sensitive and selective and is ideal for measuring low levels of 
electrochemically active (oxidizable) analytes. Both methods can be run 
simultaneously, as shown in the system schematic in Figure 1. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

FIGURE 1. Schematic of the parallel setup HPLC solution for the simultaneous  
operation of both analytical methods: system 1 for the accelerator and leveller 
by ECD, and system 2 for the accelerator and suppressor by charged aerosol 
detector. 

Results  
The samples of plating bath and of plating bath additive stock solutions (“standards”) 
were from two, unrelated sources. As a result, the components of the plating bath 
samples may not be the same as those of the standards. Consequently, samples were 
analyzed according to nominal concentrations (NC) used by the source of the standards, 
where analytes matched. 

Copper Accelerator and Leveller Analysis by Electrochemical Detection 
Standards of stock additive solutions were prepared in concentrations of 300% NC, and 
serially diluted to low concentrations. Calibration standards were injected in triplicate to 
determine calibration curves and instrument precision.  

The linear correlation coefficients for both additives were high, with R2= 0.9987 and 
0.9945 for accelerator and leveller, respectively. Peak area percent RSD values ranged 
from 0.6 to 2.3 for accelerator and 4.9 to 18.6 for leveller, with the higher values at the 
low concentrations. 

A samples was neutralized and analyzed, and the HPLC-ECD chromatograms are shown 
in Figure 4, with the +650 mV chromatogram in black, and the +900 mV chromatogram 
shown in blue. 
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FIGURE 4. HPLC-ECD chromatogram, two potentials overlaid, of used copper 
plating bath containing accelerator and leveller(s). Peak at 4.895 minutes is 
likely a free amine-polymer, based on the peak shape and potential of oxidation. 

Methods  
Sample Preparation 
All copper plating bath standard solutions and samples must be properly neutralized 
prior to injection onto the HPLC system.  

Liquid Chromatography – Copper Additives 
HPLC System:   UltiMate 3000 DGP-3000RS system, parallel setup solution 
Mobile Phase 1A:*   Water, 0.1 v/v-% trifluoroacetic acid  
Mobile Phase 1B/2B:   Methanol 
Mobile Phase 1C: *  Acetonitrile/methanol (900:100), 0.1 v/v-% trifluoroacetic acid 
Mobile Phase 2A:   (70% Ethyl amine)/acetic acid in water (6 mL/L:4 mL/L), pH 5-6 
Injection Volumes:  100 L 
HPLC Column 1:  Thermo Scientific™ Accucore™ C18, 2.6 m, 4.6 × 150 mm 
HPLC Column 2:  Thermo Scientific™ Acclaim™ 120 C18, 5 m, 4.6 × 150 mm 
Column Temperature:   40 °C 
Detector 1:  ECD3000RS with Thermo Scientific Dionex 6011RS 
 Standard Analytical Cell  
 Electrode 1:  +650 mV    Electrode 2:  +900 mV, relative to Pd 
Detector 2:  Corona Veo RS   Data Rate:  10 Hz Filter:  3.6s 
 Evaporation Temperature: 50 °C 
 Power Function: 2.00 (5.8 – 8.5 minutes) 
Sample Temperature: 20 °C 
Analysis Time:   16 minutes 
Gradients: 

 

 
 
 
 
Liquid Chromatography – Nickel Additives 
HPLC System: UltMate 3000 SD or RS system. 
Column: Accucore C18, 2.6 m, 4.6 × 150 mm 
Mobile phase A: Water, 25 mM diethylamine acetate, pH 5.0 
Mobile phase B: Acetonitrile 
Flow Rate: 1 mL/min 
Column Temperature:   40 °C 
Detector 1: DAD-3400RS at wavelength 230 nm 
Detector 2:  Corona Veo RS, placed after DAD 
 Data Rate:  10 Hz Filter:  3.6 s 
 Evaporation Temperature: 25 °C 
 Power Function: 1.0 
Gradient: -5 min, 2 %B; 0 min, 2 %B; 15 min, 95 %B; 20 min, 95 %B;  
 20 min, 2 %B 

Data Analysis 
The HPLC system, data collection, and processing were all operated by and performed 
on the Thermo Scientific™ Dionex™ Chromeleon™  Chromatography Data System        
7.2 SR1 software. 

The ECD3000RS uses unique coulometric working electrodes that offer extreme 
sensitivity and selectivity, well beyond those achieved by traditional amperometric 
electrodes. The selectivity of serially placed coulometric electrodes is presented in 
Figure 3. Typically the first electrode is held at a low potential, the second at a higher 
potential. As the analytes pass through from one electrode to the other, labile 
compounds will respond (oxidize) at the first electrode, leaving the second 
(downstream) electrode free to measure more stable compounds. Electrodes are 
100% efficient, which provides the selectivity. In the example below, analyte A oxidizes 
to P on electrode 1 (E1) held at +650 mV, relative to palladium, applied potential 
effectively removing it from further reaction. Analyte B remains unchanged until it 
encounters electrode two (E2) at +900 mV applied potential. At E2, analyte B oxidizes 
to Q. This provides a selective means of determining amounts of different analytes. 

 

1

2

3

4

5

6

7

8
9

101

2

3

4

5

6

7

8
9

10

FIGURE 2. Schematic and functioning of charged aerosol detection. 

1. Liquid eluent enters from HPLC system 
2. Pneumatic nebulization occurs 
3. Small droplets enter drying tube 
4. Large droplets exit to drain 
5. Dried particles enter mixing chamber 
6. Gas stream passes over corona needle 
7. Charge gas collides with particles and 

charge is transferred  
8. High mobility species are removed 
9. Charge measured by electrometer 
10. Signal transferred to chromatographic 

software 

The charged aerosol detector is a sensitive, mass-based detector, especially well-
suited for the determination of any nonvolatile analyte independent of chemical 
characteristics. As shown in Figure 2, the detector uses nebulization to create aerosol 
droplets. The mobile phase evaporates in the drying tube, leaving analyte particles, 
which become charged in the mixing chamber. The charge is then measured by a 
highly sensitive electrometer, providing reproducible, nanogram-level sensitivity. This 
technology has greater sensitivity and precision than evaporative light scattering (ELS) 
and refractive index (RI), and it is simpler and less expensive to operate than a mass 
spectrometer (MS). Typical characteristics of charged aerosol detection include: low-
nanogram on column (o.c.) amounts detected, over four orders of magnitude of linear, 
dynamic range, and high precision results with typically less than two percent of peak 
area relative standard deviation (RSD). Analyte response is also largely independent 
of chemical structure, providing clear relationships among different analytes in a 
sample. 
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FIGURE 5. Overlay chromatograms of new (in black) and used (in blue, diluted 
50%) copper plating baths, using HPLC with charged aerosol detection. 
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Spike and recovery values, at 50% spike amounts, were determined for the 
accelerator and leveller: a bath sample was diluted to 50% to find initial 
concentrations, and then a second sample was diluted with 100% NC standard, 
yielding a 50% spike. The recovery values were found to be 99% for the accelerator, 
and 70% for the leveller. The signal-to-noise (S/N) value of the leveller (blue) in this 
spiked sample was 66, indicating that sufficient sensitivity was available for these 
determinations. Signal-to-noise values of 10 and 3.3 were used to calculate the limits 
of quantitation (LOQ) and detection (LOD), respectively. The LOQ and LOD values 
were 1 and 0.3% NC for the accelerator and 20% and 7% NC for the leveller, 
respectively. 
 
Copper Suppressor Analysis by Charged Aerosol Detection 
 
Standards of stock additive solutions were prepared in concentrations of 300% NC, 
and diluted to low concentrations. Calibration standards were injected in triplicate to 
determine correlation and precision.  The linear calibration correlation coefficients 
were R2= 0.9987 and 0.9957 for accelerator and suppressor, respectively. Precision 
RSD values, based on peak areas varied between 1.0 and 5.3% for the accelerator, 
and were less than 1 % for the suppressor. In addition to method accuracy and 
precision data, the LC-Charged Aerosol Detection method was evaluated for spike 
recovery in a similar manner as indicated for the ECD evaluation. Recovery values 
for the accelerator was 103%, and for the suppressor, 95-100%.  
 
The sensitivity for the accelerator was found to be 3% NC for LOQ, based on a S/N 
ratio of 10. In the sample chromatograms, shown in Figure 5, two plating bath 
samples are overlaid consisting of a new and a used (diluted 50%) plating bath. The 
suppressor is seen as the largest peak in the chromatograms, along with many 
smaller peaks with earlier retention times. These smaller peaks represent lower 
molecular weight fractions of the suppressor. Compared to the new bath, the 
suppressor concentrations differed by nearly seven-fold in the used bath, along with 
a four-fold increase in the relative amounts of the smaller molecular weight fractions. 
These changes are related to suppressor degradation as the bath is operated.3 Both 
accelerator and suppressor can be determined as well as bath quality, as a measure 
of relative suppressor degradation. 
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FIGURE 6. HPLC-Charged Aerosol Detection chromatogram of saccharin in 
nickel plating bath (blue), and SAS (black) overlaid. 
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4 Quantitation and Characterization of Copper and Nickel Plating Bath Additives by Liquid Chromatography

Nickel Saccharin and SAS Analysis by HPLC–UV–Charged Aerosol Detection 
A nickel plating bath matrix sample was spiked with an amount of saccharin and 
analyzed using the conditions outlined above.  Clear retention of the analytes was 
evident, by HPLC-Charged Aerosol Detection, as shown in Figure 6.  Calibration and 
sample analyses were conducted (not shown), and the results were quantifiable.  Also, 
the use of saccharin for the determination of saccharin-related impurities by HPLC-UV at 
230 nm is possible (not shown). 

 

 

 

 

 

 

 

 

 

 

 

 

 

Measurement Capability 
Gage studies were conducted on analyses of organic additives in plating baths by current 
metrology and by the HPLC-Charged Aerosol Detection methods.  The results, shown in 
Table 1, demonstrated that the HPLC methods are significantly more capable than 
previous methods, with  SV/T (standard variance relative to process tolerance) values 
significantly reduced. Methods where the SV/T values < 7 are considered to be highly 
capable, and those between 10 – 30 need to be evaluated for risks of errors. 

Table 1.  Gage evaluation comparing previous metrology with HPLC-Charged 
Aerosol Detection metrology. 

FIGURE 3. Functioning of electrochemical detection using coulometric cells. 
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Quantitation and Characterization of Copper and Nickel Plating Bath Additives by Liquid Chromatography 
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Conclusions 
Using charged aerosol detection and electrochemical detection running in parallel on 
the UltiMate 3000 2x Dual LC provided excellent quantitative data on the three copper 
plating bath additives. 

 HPLC methods are capable of reliably quantifying organic additives in copper 
and nickel plating baths, as well as determining plating bath quality. 

 Analysis times were short, compared to CVS and other analytical methods. 

 The method is extremely versatile, capable of being adapted to a variety of 
plating bath compositions. 
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Overview 
Purpose: Analytical methods to determine quantities of copper and nickel plating bath 
additives are described. These methods must be stable, sufficiently sensitive, and 
retain flexibility for use with the many formulations of copper plating baths that exist. 

Methods: Two HPLC methods are run simultaneously to quantitatively measure the 
three additives that are typically used in copper plating baths. Both methods use 
reversed-phase high-performance liquid chromatography (RP-HPLC), which can be run 
simultaneously on the Thermo Scientific™ Dionex™ UltiMate™ 3000 HPLC system. The 
accelerator and suppressor are measured using the Thermo Scientific™  Dionex™ 

Corona™  Veo™ Charged Aerosol Detector; the leveller and accelerator (again) are 
measured using the Thermo Scientific Dionex UltiMate 3000 ECD30000RS 
Electrochemical Detector (ECD).  For the nickel plating a method for measuring 
saccharin and sodium alkyl sulfate (SAS), using ultraviolet absorption (UV) and 
charged aerosol detection are described. 

Results: The methods are precise and sensitive for the determination of all additives. A 
quantitative measure of suppressor and suppressor degradation is presented.  
Calibration curves and sample analysis results are reported for all additives. Both 
analyses can be run using the same sample preparation. 

Introduction 
Copper plating baths are used in the manufacture of a multitude of products, from the 
relatively humble cooking pot to the most advanced integrated circuits and satellites.  
In order to provide the highest quality and most consistent products with copper plated 
components, the plating process must be well characterized and tightly controlled. 
 
One of the most common approaches to the copper plating is the acid bath, using 
copper sulfate, sulfuric acid, and a number of additives, namely the accelerator 
(typically a bis(sodium sulfoalkyl) disulfide), suppressor (a polyalkylglycol), and leveller 
(either a large molecular weight polymer or small molecule containing nitrogen or 
sulfur). Each modifier serves a particular function controlling the speed of plating, 
surface wetting, and gap-filling in order to provide a smooth surface. The most 
commonly used technique, cyclic voltammetric stripping (CVS), measures these 
additives as combined, and has been cited as being slow (hours) and not very 
accurate.1 HPLC has also been investigated, but with few published results. The 
accelerator and leveller are present in minute concentrations and lack chromophores, 
which limits the choice of detectors that can be used for quantitation. HPLC can 
provide selective quantitation of these additives, without the use of corrosive sulfuric 
acid mobile phases.1,2 For nickel additives, saccharin can be measured by UV along 
with SAS by Corona charged aerosol detectors. 
 
A faster, quantitative measure of additives can be achieved using the UltiMate 3000  
x2 Dual LC system with two detectors: the Corona Veo RS and the ECD3000RS 
detectors. The Corona charged aerosol detector is a universal detector, capable of 
measuring any nonvolatile analyte to nanograms on column. The ECD3000RS detector 
is both extremely sensitive and selective and is ideal for measuring low levels of 
electrochemically active (oxidizable) analytes. Both methods can be run 
simultaneously, as shown in the system schematic in Figure 1. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

FIGURE 1. Schematic of the parallel setup HPLC solution for the simultaneous  
operation of both analytical methods: system 1 for the accelerator and leveller 
by ECD, and system 2 for the accelerator and suppressor by charged aerosol 
detector. 

Results  
The samples of plating bath and of plating bath additive stock solutions (“standards”) 
were from two, unrelated sources. As a result, the components of the plating bath 
samples may not be the same as those of the standards. Consequently, samples were 
analyzed according to nominal concentrations (NC) used by the source of the standards, 
where analytes matched. 

Copper Accelerator and Leveller Analysis by Electrochemical Detection 
Standards of stock additive solutions were prepared in concentrations of 300% NC, and 
serially diluted to low concentrations. Calibration standards were injected in triplicate to 
determine calibration curves and instrument precision.  

The linear correlation coefficients for both additives were high, with R2= 0.9987 and 
0.9945 for accelerator and leveller, respectively. Peak area percent RSD values ranged 
from 0.6 to 2.3 for accelerator and 4.9 to 18.6 for leveller, with the higher values at the 
low concentrations. 

A samples was neutralized and analyzed, and the HPLC-ECD chromatograms are shown 
in Figure 4, with the +650 mV chromatogram in black, and the +900 mV chromatogram 
shown in blue. 
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FIGURE 4. HPLC-ECD chromatogram, two potentials overlaid, of used copper 
plating bath containing accelerator and leveller(s). Peak at 4.895 minutes is 
likely a free amine-polymer, based on the peak shape and potential of oxidation. 

Methods  
Sample Preparation 
All copper plating bath standard solutions and samples must be properly neutralized 
prior to injection onto the HPLC system.  

Liquid Chromatography – Copper Additives 
HPLC System:   UltiMate 3000 DGP-3000RS system, parallel setup solution 
Mobile Phase 1A:*   Water, 0.1 v/v-% trifluoroacetic acid  
Mobile Phase 1B/2B:   Methanol 
Mobile Phase 1C: *  Acetonitrile/methanol (900:100), 0.1 v/v-% trifluoroacetic acid 
Mobile Phase 2A:   (70% Ethyl amine)/acetic acid in water (6 mL/L:4 mL/L), pH 5-6 
Injection Volumes:  100 L 
HPLC Column 1:  Thermo Scientific™ Accucore™ C18, 2.6 m, 4.6 × 150 mm 
HPLC Column 2:  Thermo Scientific™ Acclaim™ 120 C18, 5 m, 4.6 × 150 mm 
Column Temperature:   40 °C 
Detector 1:  ECD3000RS with Thermo Scientific Dionex 6011RS 
 Standard Analytical Cell  
 Electrode 1:  +650 mV    Electrode 2:  +900 mV, relative to Pd 
Detector 2:  Corona Veo RS   Data Rate:  10 Hz Filter:  3.6s 
 Evaporation Temperature: 50 °C 
 Power Function: 2.00 (5.8 – 8.5 minutes) 
Sample Temperature: 20 °C 
Analysis Time:   16 minutes 
Gradients: 

 

 
 
 
 
Liquid Chromatography – Nickel Additives 
HPLC System: UltMate 3000 SD or RS system. 
Column: Accucore C18, 2.6 m, 4.6 × 150 mm 
Mobile phase A: Water, 25 mM diethylamine acetate, pH 5.0 
Mobile phase B: Acetonitrile 
Flow Rate: 1 mL/min 
Column Temperature:   40 °C 
Detector 1: DAD-3400RS at wavelength 230 nm 
Detector 2:  Corona Veo RS, placed after DAD 
 Data Rate:  10 Hz Filter:  3.6 s 
 Evaporation Temperature: 25 °C 
 Power Function: 1.0 
Gradient: -5 min, 2 %B; 0 min, 2 %B; 15 min, 95 %B; 20 min, 95 %B;  
 20 min, 2 %B 

Data Analysis 
The HPLC system, data collection, and processing were all operated by and performed 
on the Thermo Scientific™ Dionex™ Chromeleon™  Chromatography Data System        
7.2 SR1 software. 

The ECD3000RS uses unique coulometric working electrodes that offer extreme 
sensitivity and selectivity, well beyond those achieved by traditional amperometric 
electrodes. The selectivity of serially placed coulometric electrodes is presented in 
Figure 3. Typically the first electrode is held at a low potential, the second at a higher 
potential. As the analytes pass through from one electrode to the other, labile 
compounds will respond (oxidize) at the first electrode, leaving the second 
(downstream) electrode free to measure more stable compounds. Electrodes are 
100% efficient, which provides the selectivity. In the example below, analyte A oxidizes 
to P on electrode 1 (E1) held at +650 mV, relative to palladium, applied potential 
effectively removing it from further reaction. Analyte B remains unchanged until it 
encounters electrode two (E2) at +900 mV applied potential. At E2, analyte B oxidizes 
to Q. This provides a selective means of determining amounts of different analytes. 
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FIGURE 2. Schematic and functioning of charged aerosol detection. 

1. Liquid eluent enters from HPLC system 
2. Pneumatic nebulization occurs 
3. Small droplets enter drying tube 
4. Large droplets exit to drain 
5. Dried particles enter mixing chamber 
6. Gas stream passes over corona needle 
7. Charge gas collides with particles and 

charge is transferred  
8. High mobility species are removed 
9. Charge measured by electrometer 
10. Signal transferred to chromatographic 

software 

The charged aerosol detector is a sensitive, mass-based detector, especially well-
suited for the determination of any nonvolatile analyte independent of chemical 
characteristics. As shown in Figure 2, the detector uses nebulization to create aerosol 
droplets. The mobile phase evaporates in the drying tube, leaving analyte particles, 
which become charged in the mixing chamber. The charge is then measured by a 
highly sensitive electrometer, providing reproducible, nanogram-level sensitivity. This 
technology has greater sensitivity and precision than evaporative light scattering (ELS) 
and refractive index (RI), and it is simpler and less expensive to operate than a mass 
spectrometer (MS). Typical characteristics of charged aerosol detection include: low-
nanogram on column (o.c.) amounts detected, over four orders of magnitude of linear, 
dynamic range, and high precision results with typically less than two percent of peak 
area relative standard deviation (RSD). Analyte response is also largely independent 
of chemical structure, providing clear relationships among different analytes in a 
sample. 

0.0 1.0 2.0 3.0 4.0 5.0 6.0 7.0 8.0 9.0 10.0 11.1 

-130 

-100 

0 

100 

200 

300 

370 

1 - Leveller - 7.037 

1 - Accelerator - 3.032 

2 - 4.895 

min 

µA 

FIGURE 5. Overlay chromatograms of new (in black) and used (in blue, diluted 
50%) copper plating baths, using HPLC with charged aerosol detection. 
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Spike and recovery values, at 50% spike amounts, were determined for the 
accelerator and leveller: a bath sample was diluted to 50% to find initial 
concentrations, and then a second sample was diluted with 100% NC standard, 
yielding a 50% spike. The recovery values were found to be 99% for the accelerator, 
and 70% for the leveller. The signal-to-noise (S/N) value of the leveller (blue) in this 
spiked sample was 66, indicating that sufficient sensitivity was available for these 
determinations. Signal-to-noise values of 10 and 3.3 were used to calculate the limits 
of quantitation (LOQ) and detection (LOD), respectively. The LOQ and LOD values 
were 1 and 0.3% NC for the accelerator and 20% and 7% NC for the leveller, 
respectively. 
 
Copper Suppressor Analysis by Charged Aerosol Detection 
 
Standards of stock additive solutions were prepared in concentrations of 300% NC, 
and diluted to low concentrations. Calibration standards were injected in triplicate to 
determine correlation and precision.  The linear calibration correlation coefficients 
were R2= 0.9987 and 0.9957 for accelerator and suppressor, respectively. Precision 
RSD values, based on peak areas varied between 1.0 and 5.3% for the accelerator, 
and were less than 1 % for the suppressor. In addition to method accuracy and 
precision data, the LC-Charged Aerosol Detection method was evaluated for spike 
recovery in a similar manner as indicated for the ECD evaluation. Recovery values 
for the accelerator was 103%, and for the suppressor, 95-100%.  
 
The sensitivity for the accelerator was found to be 3% NC for LOQ, based on a S/N 
ratio of 10. In the sample chromatograms, shown in Figure 5, two plating bath 
samples are overlaid consisting of a new and a used (diluted 50%) plating bath. The 
suppressor is seen as the largest peak in the chromatograms, along with many 
smaller peaks with earlier retention times. These smaller peaks represent lower 
molecular weight fractions of the suppressor. Compared to the new bath, the 
suppressor concentrations differed by nearly seven-fold in the used bath, along with 
a four-fold increase in the relative amounts of the smaller molecular weight fractions. 
These changes are related to suppressor degradation as the bath is operated.3 Both 
accelerator and suppressor can be determined as well as bath quality, as a measure 
of relative suppressor degradation. 
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FIGURE 6. HPLC-Charged Aerosol Detection chromatogram of saccharin in 
nickel plating bath (blue), and SAS (black) overlaid. 
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Nickel Saccharin and SAS Analysis by HPLC–UV–Charged Aerosol Detection 
A nickel plating bath matrix sample was spiked with an amount of saccharin and 
analyzed using the conditions outlined above.  Clear retention of the analytes was 
evident, by HPLC-Charged Aerosol Detection, as shown in Figure 6.  Calibration and 
sample analyses were conducted (not shown), and the results were quantifiable.  Also, 
the use of saccharin for the determination of saccharin-related impurities by HPLC-UV at 
230 nm is possible (not shown). 

 

 

 

 

 

 

 

 

 

 

 

 

 

Measurement Capability 
Gage studies were conducted on analyses of organic additives in plating baths by current 
metrology and by the HPLC-Charged Aerosol Detection methods.  The results, shown in 
Table 1, demonstrated that the HPLC methods are significantly more capable than 
previous methods, with  SV/T (standard variance relative to process tolerance) values 
significantly reduced. Methods where the SV/T values < 7 are considered to be highly 
capable, and those between 10 – 30 need to be evaluated for risks of errors. 

Table 1.  Gage evaluation comparing previous metrology with HPLC-Charged 
Aerosol Detection metrology. 

FIGURE 3. Functioning of electrochemical detection using coulometric cells. 
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Conclusions 
Using charged aerosol detection and electrochemical detection running in parallel on 
the UltiMate 3000 2x Dual LC provided excellent quantitative data on the three copper 
plating bath additives. 

 HPLC methods are capable of reliably quantifying organic additives in copper 
and nickel plating baths, as well as determining plating bath quality. 

 Analysis times were short, compared to CVS and other analytical methods. 

 The method is extremely versatile, capable of being adapted to a variety of 
plating bath compositions. 
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Overview 
Purpose: Analytical methods to determine quantities of copper and nickel plating bath 
additives are described. These methods must be stable, sufficiently sensitive, and 
retain flexibility for use with the many formulations of copper plating baths that exist. 

Methods: Two HPLC methods are run simultaneously to quantitatively measure the 
three additives that are typically used in copper plating baths. Both methods use 
reversed-phase high-performance liquid chromatography (RP-HPLC), which can be run 
simultaneously on the Thermo Scientific™ Dionex™ UltiMate™ 3000 HPLC system. The 
accelerator and suppressor are measured using the Thermo Scientific™  Dionex™ 

Corona™  Veo™ Charged Aerosol Detector; the leveller and accelerator (again) are 
measured using the Thermo Scientific Dionex UltiMate 3000 ECD30000RS 
Electrochemical Detector (ECD).  For the nickel plating a method for measuring 
saccharin and sodium alkyl sulfate (SAS), using ultraviolet absorption (UV) and 
charged aerosol detection are described. 

Results: The methods are precise and sensitive for the determination of all additives. A 
quantitative measure of suppressor and suppressor degradation is presented.  
Calibration curves and sample analysis results are reported for all additives. Both 
analyses can be run using the same sample preparation. 

Introduction 
Copper plating baths are used in the manufacture of a multitude of products, from the 
relatively humble cooking pot to the most advanced integrated circuits and satellites.  
In order to provide the highest quality and most consistent products with copper plated 
components, the plating process must be well characterized and tightly controlled. 
 
One of the most common approaches to the copper plating is the acid bath, using 
copper sulfate, sulfuric acid, and a number of additives, namely the accelerator 
(typically a bis(sodium sulfoalkyl) disulfide), suppressor (a polyalkylglycol), and leveller 
(either a large molecular weight polymer or small molecule containing nitrogen or 
sulfur). Each modifier serves a particular function controlling the speed of plating, 
surface wetting, and gap-filling in order to provide a smooth surface. The most 
commonly used technique, cyclic voltammetric stripping (CVS), measures these 
additives as combined, and has been cited as being slow (hours) and not very 
accurate.1 HPLC has also been investigated, but with few published results. The 
accelerator and leveller are present in minute concentrations and lack chromophores, 
which limits the choice of detectors that can be used for quantitation. HPLC can 
provide selective quantitation of these additives, without the use of corrosive sulfuric 
acid mobile phases.1,2 For nickel additives, saccharin can be measured by UV along 
with SAS by Corona charged aerosol detectors. 
 
A faster, quantitative measure of additives can be achieved using the UltiMate 3000  
x2 Dual LC system with two detectors: the Corona Veo RS and the ECD3000RS 
detectors. The Corona charged aerosol detector is a universal detector, capable of 
measuring any nonvolatile analyte to nanograms on column. The ECD3000RS detector 
is both extremely sensitive and selective and is ideal for measuring low levels of 
electrochemically active (oxidizable) analytes. Both methods can be run 
simultaneously, as shown in the system schematic in Figure 1. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

FIGURE 1. Schematic of the parallel setup HPLC solution for the simultaneous  
operation of both analytical methods: system 1 for the accelerator and leveller 
by ECD, and system 2 for the accelerator and suppressor by charged aerosol 
detector. 

Results  
The samples of plating bath and of plating bath additive stock solutions (“standards”) 
were from two, unrelated sources. As a result, the components of the plating bath 
samples may not be the same as those of the standards. Consequently, samples were 
analyzed according to nominal concentrations (NC) used by the source of the standards, 
where analytes matched. 

Copper Accelerator and Leveller Analysis by Electrochemical Detection 
Standards of stock additive solutions were prepared in concentrations of 300% NC, and 
serially diluted to low concentrations. Calibration standards were injected in triplicate to 
determine calibration curves and instrument precision.  

The linear correlation coefficients for both additives were high, with R2= 0.9987 and 
0.9945 for accelerator and leveller, respectively. Peak area percent RSD values ranged 
from 0.6 to 2.3 for accelerator and 4.9 to 18.6 for leveller, with the higher values at the 
low concentrations. 

A samples was neutralized and analyzed, and the HPLC-ECD chromatograms are shown 
in Figure 4, with the +650 mV chromatogram in black, and the +900 mV chromatogram 
shown in blue. 
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FIGURE 4. HPLC-ECD chromatogram, two potentials overlaid, of used copper 
plating bath containing accelerator and leveller(s). Peak at 4.895 minutes is 
likely a free amine-polymer, based on the peak shape and potential of oxidation. 

Methods  
Sample Preparation 
All copper plating bath standard solutions and samples must be properly neutralized 
prior to injection onto the HPLC system.  

Liquid Chromatography – Copper Additives 
HPLC System:   UltiMate 3000 DGP-3000RS system, parallel setup solution 
Mobile Phase 1A:*   Water, 0.1 v/v-% trifluoroacetic acid  
Mobile Phase 1B/2B:   Methanol 
Mobile Phase 1C: *  Acetonitrile/methanol (900:100), 0.1 v/v-% trifluoroacetic acid 
Mobile Phase 2A:   (70% Ethyl amine)/acetic acid in water (6 mL/L:4 mL/L), pH 5-6 
Injection Volumes:  100 L 
HPLC Column 1:  Thermo Scientific™ Accucore™ C18, 2.6 m, 4.6 × 150 mm 
HPLC Column 2:  Thermo Scientific™ Acclaim™ 120 C18, 5 m, 4.6 × 150 mm 
Column Temperature:   40 °C 
Detector 1:  ECD3000RS with Thermo Scientific Dionex 6011RS 
 Standard Analytical Cell  
 Electrode 1:  +650 mV    Electrode 2:  +900 mV, relative to Pd 
Detector 2:  Corona Veo RS   Data Rate:  10 Hz Filter:  3.6s 
 Evaporation Temperature: 50 °C 
 Power Function: 2.00 (5.8 – 8.5 minutes) 
Sample Temperature: 20 °C 
Analysis Time:   16 minutes 
Gradients: 

 

 
 
 
 
Liquid Chromatography – Nickel Additives 
HPLC System: UltMate 3000 SD or RS system. 
Column: Accucore C18, 2.6 m, 4.6 × 150 mm 
Mobile phase A: Water, 25 mM diethylamine acetate, pH 5.0 
Mobile phase B: Acetonitrile 
Flow Rate: 1 mL/min 
Column Temperature:   40 °C 
Detector 1: DAD-3400RS at wavelength 230 nm 
Detector 2:  Corona Veo RS, placed after DAD 
 Data Rate:  10 Hz Filter:  3.6 s 
 Evaporation Temperature: 25 °C 
 Power Function: 1.0 
Gradient: -5 min, 2 %B; 0 min, 2 %B; 15 min, 95 %B; 20 min, 95 %B;  
 20 min, 2 %B 

Data Analysis 
The HPLC system, data collection, and processing were all operated by and performed 
on the Thermo Scientific™ Dionex™ Chromeleon™  Chromatography Data System        
7.2 SR1 software. 

The ECD3000RS uses unique coulometric working electrodes that offer extreme 
sensitivity and selectivity, well beyond those achieved by traditional amperometric 
electrodes. The selectivity of serially placed coulometric electrodes is presented in 
Figure 3. Typically the first electrode is held at a low potential, the second at a higher 
potential. As the analytes pass through from one electrode to the other, labile 
compounds will respond (oxidize) at the first electrode, leaving the second 
(downstream) electrode free to measure more stable compounds. Electrodes are 
100% efficient, which provides the selectivity. In the example below, analyte A oxidizes 
to P on electrode 1 (E1) held at +650 mV, relative to palladium, applied potential 
effectively removing it from further reaction. Analyte B remains unchanged until it 
encounters electrode two (E2) at +900 mV applied potential. At E2, analyte B oxidizes 
to Q. This provides a selective means of determining amounts of different analytes. 
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FIGURE 2. Schematic and functioning of charged aerosol detection. 

1. Liquid eluent enters from HPLC system 
2. Pneumatic nebulization occurs 
3. Small droplets enter drying tube 
4. Large droplets exit to drain 
5. Dried particles enter mixing chamber 
6. Gas stream passes over corona needle 
7. Charge gas collides with particles and 

charge is transferred  
8. High mobility species are removed 
9. Charge measured by electrometer 
10. Signal transferred to chromatographic 

software 

The charged aerosol detector is a sensitive, mass-based detector, especially well-
suited for the determination of any nonvolatile analyte independent of chemical 
characteristics. As shown in Figure 2, the detector uses nebulization to create aerosol 
droplets. The mobile phase evaporates in the drying tube, leaving analyte particles, 
which become charged in the mixing chamber. The charge is then measured by a 
highly sensitive electrometer, providing reproducible, nanogram-level sensitivity. This 
technology has greater sensitivity and precision than evaporative light scattering (ELS) 
and refractive index (RI), and it is simpler and less expensive to operate than a mass 
spectrometer (MS). Typical characteristics of charged aerosol detection include: low-
nanogram on column (o.c.) amounts detected, over four orders of magnitude of linear, 
dynamic range, and high precision results with typically less than two percent of peak 
area relative standard deviation (RSD). Analyte response is also largely independent 
of chemical structure, providing clear relationships among different analytes in a 
sample. 
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FIGURE 5. Overlay chromatograms of new (in black) and used (in blue, diluted 
50%) copper plating baths, using HPLC with charged aerosol detection. 
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Spike and recovery values, at 50% spike amounts, were determined for the 
accelerator and leveller: a bath sample was diluted to 50% to find initial 
concentrations, and then a second sample was diluted with 100% NC standard, 
yielding a 50% spike. The recovery values were found to be 99% for the accelerator, 
and 70% for the leveller. The signal-to-noise (S/N) value of the leveller (blue) in this 
spiked sample was 66, indicating that sufficient sensitivity was available for these 
determinations. Signal-to-noise values of 10 and 3.3 were used to calculate the limits 
of quantitation (LOQ) and detection (LOD), respectively. The LOQ and LOD values 
were 1 and 0.3% NC for the accelerator and 20% and 7% NC for the leveller, 
respectively. 
 
Copper Suppressor Analysis by Charged Aerosol Detection 
 
Standards of stock additive solutions were prepared in concentrations of 300% NC, 
and diluted to low concentrations. Calibration standards were injected in triplicate to 
determine correlation and precision.  The linear calibration correlation coefficients 
were R2= 0.9987 and 0.9957 for accelerator and suppressor, respectively. Precision 
RSD values, based on peak areas varied between 1.0 and 5.3% for the accelerator, 
and were less than 1 % for the suppressor. In addition to method accuracy and 
precision data, the LC-Charged Aerosol Detection method was evaluated for spike 
recovery in a similar manner as indicated for the ECD evaluation. Recovery values 
for the accelerator was 103%, and for the suppressor, 95-100%.  
 
The sensitivity for the accelerator was found to be 3% NC for LOQ, based on a S/N 
ratio of 10. In the sample chromatograms, shown in Figure 5, two plating bath 
samples are overlaid consisting of a new and a used (diluted 50%) plating bath. The 
suppressor is seen as the largest peak in the chromatograms, along with many 
smaller peaks with earlier retention times. These smaller peaks represent lower 
molecular weight fractions of the suppressor. Compared to the new bath, the 
suppressor concentrations differed by nearly seven-fold in the used bath, along with 
a four-fold increase in the relative amounts of the smaller molecular weight fractions. 
These changes are related to suppressor degradation as the bath is operated.3 Both 
accelerator and suppressor can be determined as well as bath quality, as a measure 
of relative suppressor degradation. 
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FIGURE 6. HPLC-Charged Aerosol Detection chromatogram of saccharin in 
nickel plating bath (blue), and SAS (black) overlaid. 
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Nickel Saccharin and SAS Analysis by HPLC–UV–Charged Aerosol Detection 
A nickel plating bath matrix sample was spiked with an amount of saccharin and 
analyzed using the conditions outlined above.  Clear retention of the analytes was 
evident, by HPLC-Charged Aerosol Detection, as shown in Figure 6.  Calibration and 
sample analyses were conducted (not shown), and the results were quantifiable.  Also, 
the use of saccharin for the determination of saccharin-related impurities by HPLC-UV at 
230 nm is possible (not shown). 

 

 

 

 

 

 

 

 

 

 

 

 

 

Measurement Capability 
Gage studies were conducted on analyses of organic additives in plating baths by current 
metrology and by the HPLC-Charged Aerosol Detection methods.  The results, shown in 
Table 1, demonstrated that the HPLC methods are significantly more capable than 
previous methods, with  SV/T (standard variance relative to process tolerance) values 
significantly reduced. Methods where the SV/T values < 7 are considered to be highly 
capable, and those between 10 – 30 need to be evaluated for risks of errors. 

Table 1.  Gage evaluation comparing previous metrology with HPLC-Charged 
Aerosol Detection metrology. 

FIGURE 3. Functioning of electrochemical detection using coulometric cells. 
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Quantitation and Characterization of Copper and Nickel Plating Bath Additives by Liquid Chromatography 
Marc Plante, Bruce Bailey, Ian N. Acworth  Thermo Fisher Scientific, Chelmsford, MA, USA 

Conclusions 
Using charged aerosol detection and electrochemical detection running in parallel on 
the UltiMate 3000 2x Dual LC provided excellent quantitative data on the three copper 
plating bath additives. 

 HPLC methods are capable of reliably quantifying organic additives in copper 
and nickel plating baths, as well as determining plating bath quality. 

 Analysis times were short, compared to CVS and other analytical methods. 

 The method is extremely versatile, capable of being adapted to a variety of 
plating bath compositions. 
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Overview 
Purpose: Analytical methods to determine quantities of copper and nickel plating bath 
additives are described. These methods must be stable, sufficiently sensitive, and 
retain flexibility for use with the many formulations of copper plating baths that exist. 

Methods: Two HPLC methods are run simultaneously to quantitatively measure the 
three additives that are typically used in copper plating baths. Both methods use 
reversed-phase high-performance liquid chromatography (RP-HPLC), which can be run 
simultaneously on the Thermo Scientific™ Dionex™ UltiMate™ 3000 HPLC system. The 
accelerator and suppressor are measured using the Thermo Scientific™  Dionex™ 

Corona™  Veo™ Charged Aerosol Detector; the leveller and accelerator (again) are 
measured using the Thermo Scientific Dionex UltiMate 3000 ECD30000RS 
Electrochemical Detector (ECD).  For the nickel plating a method for measuring 
saccharin and sodium alkyl sulfate (SAS), using ultraviolet absorption (UV) and 
charged aerosol detection are described. 

Results: The methods are precise and sensitive for the determination of all additives. A 
quantitative measure of suppressor and suppressor degradation is presented.  
Calibration curves and sample analysis results are reported for all additives. Both 
analyses can be run using the same sample preparation. 

Introduction 
Copper plating baths are used in the manufacture of a multitude of products, from the 
relatively humble cooking pot to the most advanced integrated circuits and satellites.  
In order to provide the highest quality and most consistent products with copper plated 
components, the plating process must be well characterized and tightly controlled. 
 
One of the most common approaches to the copper plating is the acid bath, using 
copper sulfate, sulfuric acid, and a number of additives, namely the accelerator 
(typically a bis(sodium sulfoalkyl) disulfide), suppressor (a polyalkylglycol), and leveller 
(either a large molecular weight polymer or small molecule containing nitrogen or 
sulfur). Each modifier serves a particular function controlling the speed of plating, 
surface wetting, and gap-filling in order to provide a smooth surface. The most 
commonly used technique, cyclic voltammetric stripping (CVS), measures these 
additives as combined, and has been cited as being slow (hours) and not very 
accurate.1 HPLC has also been investigated, but with few published results. The 
accelerator and leveller are present in minute concentrations and lack chromophores, 
which limits the choice of detectors that can be used for quantitation. HPLC can 
provide selective quantitation of these additives, without the use of corrosive sulfuric 
acid mobile phases.1,2 For nickel additives, saccharin can be measured by UV along 
with SAS by Corona charged aerosol detectors. 
 
A faster, quantitative measure of additives can be achieved using the UltiMate 3000  
x2 Dual LC system with two detectors: the Corona Veo RS and the ECD3000RS 
detectors. The Corona charged aerosol detector is a universal detector, capable of 
measuring any nonvolatile analyte to nanograms on column. The ECD3000RS detector 
is both extremely sensitive and selective and is ideal for measuring low levels of 
electrochemically active (oxidizable) analytes. Both methods can be run 
simultaneously, as shown in the system schematic in Figure 1. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

FIGURE 1. Schematic of the parallel setup HPLC solution for the simultaneous  
operation of both analytical methods: system 1 for the accelerator and leveller 
by ECD, and system 2 for the accelerator and suppressor by charged aerosol 
detector. 

Results  
The samples of plating bath and of plating bath additive stock solutions (“standards”) 
were from two, unrelated sources. As a result, the components of the plating bath 
samples may not be the same as those of the standards. Consequently, samples were 
analyzed according to nominal concentrations (NC) used by the source of the standards, 
where analytes matched. 

Copper Accelerator and Leveller Analysis by Electrochemical Detection 
Standards of stock additive solutions were prepared in concentrations of 300% NC, and 
serially diluted to low concentrations. Calibration standards were injected in triplicate to 
determine calibration curves and instrument precision.  

The linear correlation coefficients for both additives were high, with R2= 0.9987 and 
0.9945 for accelerator and leveller, respectively. Peak area percent RSD values ranged 
from 0.6 to 2.3 for accelerator and 4.9 to 18.6 for leveller, with the higher values at the 
low concentrations. 

A samples was neutralized and analyzed, and the HPLC-ECD chromatograms are shown 
in Figure 4, with the +650 mV chromatogram in black, and the +900 mV chromatogram 
shown in blue. 
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FIGURE 4. HPLC-ECD chromatogram, two potentials overlaid, of used copper 
plating bath containing accelerator and leveller(s). Peak at 4.895 minutes is 
likely a free amine-polymer, based on the peak shape and potential of oxidation. 

Methods  
Sample Preparation 
All copper plating bath standard solutions and samples must be properly neutralized 
prior to injection onto the HPLC system.  

Liquid Chromatography – Copper Additives 
HPLC System:   UltiMate 3000 DGP-3000RS system, parallel setup solution 
Mobile Phase 1A:*   Water, 0.1 v/v-% trifluoroacetic acid  
Mobile Phase 1B/2B:   Methanol 
Mobile Phase 1C: *  Acetonitrile/methanol (900:100), 0.1 v/v-% trifluoroacetic acid 
Mobile Phase 2A:   (70% Ethyl amine)/acetic acid in water (6 mL/L:4 mL/L), pH 5-6 
Injection Volumes:  100 L 
HPLC Column 1:  Thermo Scientific™ Accucore™ C18, 2.6 m, 4.6 × 150 mm 
HPLC Column 2:  Thermo Scientific™ Acclaim™ 120 C18, 5 m, 4.6 × 150 mm 
Column Temperature:   40 °C 
Detector 1:  ECD3000RS with Thermo Scientific Dionex 6011RS 
 Standard Analytical Cell  
 Electrode 1:  +650 mV    Electrode 2:  +900 mV, relative to Pd 
Detector 2:  Corona Veo RS   Data Rate:  10 Hz Filter:  3.6s 
 Evaporation Temperature: 50 °C 
 Power Function: 2.00 (5.8 – 8.5 minutes) 
Sample Temperature: 20 °C 
Analysis Time:   16 minutes 
Gradients: 

 

 
 
 
 
Liquid Chromatography – Nickel Additives 
HPLC System: UltMate 3000 SD or RS system. 
Column: Accucore C18, 2.6 m, 4.6 × 150 mm 
Mobile phase A: Water, 25 mM diethylamine acetate, pH 5.0 
Mobile phase B: Acetonitrile 
Flow Rate: 1 mL/min 
Column Temperature:   40 °C 
Detector 1: DAD-3400RS at wavelength 230 nm 
Detector 2:  Corona Veo RS, placed after DAD 
 Data Rate:  10 Hz Filter:  3.6 s 
 Evaporation Temperature: 25 °C 
 Power Function: 1.0 
Gradient: -5 min, 2 %B; 0 min, 2 %B; 15 min, 95 %B; 20 min, 95 %B;  
 20 min, 2 %B 

Data Analysis 
The HPLC system, data collection, and processing were all operated by and performed 
on the Thermo Scientific™ Dionex™ Chromeleon™  Chromatography Data System        
7.2 SR1 software. 

The ECD3000RS uses unique coulometric working electrodes that offer extreme 
sensitivity and selectivity, well beyond those achieved by traditional amperometric 
electrodes. The selectivity of serially placed coulometric electrodes is presented in 
Figure 3. Typically the first electrode is held at a low potential, the second at a higher 
potential. As the analytes pass through from one electrode to the other, labile 
compounds will respond (oxidize) at the first electrode, leaving the second 
(downstream) electrode free to measure more stable compounds. Electrodes are 
100% efficient, which provides the selectivity. In the example below, analyte A oxidizes 
to P on electrode 1 (E1) held at +650 mV, relative to palladium, applied potential 
effectively removing it from further reaction. Analyte B remains unchanged until it 
encounters electrode two (E2) at +900 mV applied potential. At E2, analyte B oxidizes 
to Q. This provides a selective means of determining amounts of different analytes. 
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FIGURE 2. Schematic and functioning of charged aerosol detection. 

1. Liquid eluent enters from HPLC system 
2. Pneumatic nebulization occurs 
3. Small droplets enter drying tube 
4. Large droplets exit to drain 
5. Dried particles enter mixing chamber 
6. Gas stream passes over corona needle 
7. Charge gas collides with particles and 

charge is transferred  
8. High mobility species are removed 
9. Charge measured by electrometer 
10. Signal transferred to chromatographic 

software 

The charged aerosol detector is a sensitive, mass-based detector, especially well-
suited for the determination of any nonvolatile analyte independent of chemical 
characteristics. As shown in Figure 2, the detector uses nebulization to create aerosol 
droplets. The mobile phase evaporates in the drying tube, leaving analyte particles, 
which become charged in the mixing chamber. The charge is then measured by a 
highly sensitive electrometer, providing reproducible, nanogram-level sensitivity. This 
technology has greater sensitivity and precision than evaporative light scattering (ELS) 
and refractive index (RI), and it is simpler and less expensive to operate than a mass 
spectrometer (MS). Typical characteristics of charged aerosol detection include: low-
nanogram on column (o.c.) amounts detected, over four orders of magnitude of linear, 
dynamic range, and high precision results with typically less than two percent of peak 
area relative standard deviation (RSD). Analyte response is also largely independent 
of chemical structure, providing clear relationships among different analytes in a 
sample. 
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FIGURE 5. Overlay chromatograms of new (in black) and used (in blue, diluted 
50%) copper plating baths, using HPLC with charged aerosol detection. 
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Spike and recovery values, at 50% spike amounts, were determined for the 
accelerator and leveller: a bath sample was diluted to 50% to find initial 
concentrations, and then a second sample was diluted with 100% NC standard, 
yielding a 50% spike. The recovery values were found to be 99% for the accelerator, 
and 70% for the leveller. The signal-to-noise (S/N) value of the leveller (blue) in this 
spiked sample was 66, indicating that sufficient sensitivity was available for these 
determinations. Signal-to-noise values of 10 and 3.3 were used to calculate the limits 
of quantitation (LOQ) and detection (LOD), respectively. The LOQ and LOD values 
were 1 and 0.3% NC for the accelerator and 20% and 7% NC for the leveller, 
respectively. 
 
Copper Suppressor Analysis by Charged Aerosol Detection 
 
Standards of stock additive solutions were prepared in concentrations of 300% NC, 
and diluted to low concentrations. Calibration standards were injected in triplicate to 
determine correlation and precision.  The linear calibration correlation coefficients 
were R2= 0.9987 and 0.9957 for accelerator and suppressor, respectively. Precision 
RSD values, based on peak areas varied between 1.0 and 5.3% for the accelerator, 
and were less than 1 % for the suppressor. In addition to method accuracy and 
precision data, the LC-Charged Aerosol Detection method was evaluated for spike 
recovery in a similar manner as indicated for the ECD evaluation. Recovery values 
for the accelerator was 103%, and for the suppressor, 95-100%.  
 
The sensitivity for the accelerator was found to be 3% NC for LOQ, based on a S/N 
ratio of 10. In the sample chromatograms, shown in Figure 5, two plating bath 
samples are overlaid consisting of a new and a used (diluted 50%) plating bath. The 
suppressor is seen as the largest peak in the chromatograms, along with many 
smaller peaks with earlier retention times. These smaller peaks represent lower 
molecular weight fractions of the suppressor. Compared to the new bath, the 
suppressor concentrations differed by nearly seven-fold in the used bath, along with 
a four-fold increase in the relative amounts of the smaller molecular weight fractions. 
These changes are related to suppressor degradation as the bath is operated.3 Both 
accelerator and suppressor can be determined as well as bath quality, as a measure 
of relative suppressor degradation. 
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FIGURE 6. HPLC-Charged Aerosol Detection chromatogram of saccharin in 
nickel plating bath (blue), and SAS (black) overlaid. 
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Previous (method) HPLC–Charged Aerosol Detection 
Cu – Accelerator 44.90   (CVS)   9.69 
Cu – Suppressor 79.39   (CVS) 18.97 
Ni – Saccharin 10.56     (UV)   5.48 
Ni – SAS None   4.50 
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